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ABSTRACT: [FeFe] hydrogenases are highly active catalysts for hydrogen conversion. Their
active site has two components: a [4Fe−4S] electron relay covalently attached to the H2 binding
site and a diiron cluster ligated by CO, CN−, and 2-azapropane-1,3-dithiolate (ADT) ligands.
Reduction of the [4Fe−4S] site was proposed to be coupled with protonation of one of its cysteine
ligands. Here, we used time-resolved infrared (TRIR) spectroscopy on the [FeFe] hydrogenase
from Chlamydomonas reinhardtii (CrHydA1) containing a propane-1,3-dithiolate (PDT) ligand
instead of the native ADT ligand. The PDT modification does not affect the electron transfer step
to [4Fe−4S]H but prevents the enzyme from proceeding further through the catalytic cycle. We
show that the rate of the first electron transfer step is independent of the pH, supporting a simple
electron transfer rather than a proton-coupled event. These results have important implications for
our understanding of the catalytic mechanism of [FeFe] hydrogenases and highlight the utility of
TRIR.

[FeFe] hydrogenases are highly active hydrogen producing
enzymes requiring only Fe as the redox center in their active
site.1−4 The properties of the Fe core are tuned by the ligand
coordination and the protein environment to create a highly
efficient catalytic center. The active site H-cluster is composed
of a diiron subcluster ([2Fe]H) covalently bound to the
cysteine thiol of a [4Fe−4S] subcluster ([4Fe−4S]H).5−8 The
Fe atoms in [2Fe]H are coordinated by terminal CO and CN−

ligands (one on each iron). A third CO and a 2-azapropane-
1,3-dithiolate (ADT) ligand bridge the two iron ions9−11

(Figure 1A). Hydrogen is thought to bind to the active
oxidized (Hox) state between the distal Fe (that farthest from
[4Fe−4S]H) and the nitrogen of the ADT ligand.12 Together,
the nitrogen base and the low valent Lewis acidic Fe are
thought to form a frustrated Lewis pair, heterolytically splitting
H2.

13 Substitution of this nitrogen with carbon leads to an
essentially inactive enzyme (see Supplementary Discus-
sion).10,14 Clearly, the nitrogen base is critical for efficient
catalysis.15

It has been suggested that [4Fe−4S]H can also be
protonated on one or more of its cysteine thiolate groups
(see Supplementary Discussion).16,17 This protonation step
has been suggested to prevent the formation of inactive
bridging hydride bound forms of [2Fe]H.

18,19 However, both
the protonation of [4Fe−4S]H and the formation of bridging
hydrides have recently been called into question.20−23

However, these thermodynamic studies cannot completely
exclude that protonation of [4Fe−4S]H does indeed occur, but
with a pKa value outside of the range where the enzyme is

stable, and so it cannot be observed. If the electron transfer
step is coupled to proton transfer, the rate of proton transfer
observed in kinetics experiments should be sensitive to proton
concentration. Further exploration is needed to resolve the
controversy surrounding the proton-coupling of the first ET
step. Kinetics measurements, particularly time-resolved infra-
red (TRIR) spectroscopy, can give insight into whether the
first ET step is truly a PCET event or pure ET.24 Insight can be
gleaned by monitoring the formation of the first one-electron
reduced state population under different pH conditions. Here,
we use CdSe/CdS nanorods (NRs) to photoreduce a low
potential redox mediator (DQ03), which in turn transfers
electrons to [FeFe] hydrogenase on a time scale faster than
enzyme turnover, as described previously25−27 (Figure 1C).
For the time-resolved measurements described in this study,

we used a variant of an [FeFe] hydrogenase from the organism
Chlamydomonas reinhardtii (CrHydA1). In this variant, the
natural ADT ligand, which contains a nitrogen as the
bridgehead atom, is exchanged for a propane-1,3-dithiolate
(PDT) ligand (Figure 1A). The PDT substitution presumably
prevents protonation of the bridging ligand in [2Fe]H, which in
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turn prevents electron transfer from [4Fe−4S]H to [2Fe]H,
trapping the H-cluster in a one-electron reduced state,
effectively abolishing catalysis.10,28,29 This effect allows us to
clearly monitor the first reduction of [4Fe−4S]H going from
the oxidized (Hox) state to the one-electron reduced (Hred)
state without further conversion into other catalytic states
(Figure 1B). Otherwise, the spectral properties of the ADT
and PDT variants in the Hox and Hred states are very
similar.23,29,30 It should be noted that elsewhere in the
literature the one-electron reduced state in which [4Fe−4S]H
is reduced has been named Hred′ and is assigned as having a
protonated Fe-ligating cysteine.16,17

Three scenarios can be envisaged: reduction of Hox to Hred is
(1) pure ET, (2) PCET where ET is slow compared with PT,
and (3) PCET where ET is more rapid than or equal to PT. If

the formation of Hred is ET only or PT is extremely rapid, then
no difference in the rate of formation will be observed at
different pH values. If, however, this first ET is coupled to
(partially) rate-limiting PT then the rate of formation of the
Hred (Hred′) state will display pH-dependent behavior.24 This
fine-tuned potential jump approach is ideal for studying these
PCET and ET steps25,27,31 and means that any differences in
the rate of ET with pH are due to PCET in the enzyme.
Unfortunately, a lack of pH-dependent behavior could also
mean extremely rapid (subμs) PT. However, if this is the case,
the initial PCET to [4Fe−4S]H cannot explain the pH-
dependent activity profiles of [FeFe] hydrogenases as is
occasionally proposed.16−19 Instead, a slower, rate-limiting
proton dependent step (e.g. backfilling of a deprotonated
amino acid) should be involved. Regardless, it is important to

Figure 1. Description of the reaction pathways and experimental approach. (A) Illustration of the H-cluster with the bridgehead atom is highlighted
as a red X and can be NH in the ADT variant and CH2 in the PDT variant. (B) Schematic describing the proposed pathways from Hox to Hred
(Hred′). (C) Schematic of the overall ET pathway from photosensitizer to mediator to enzyme catalyst. R-SH = the sacrificial electron donor
(SED), mercaptopropionic acid (MPA), and RSSR = oxidized SED 3,3′-dithiodipropionic acid.

Figure 2. Summary of TRIR results monitoring Hred and Hox at 1935 and 1942 cm−1, respectively. (A) Representative FTIR before and after
potential jump kinetics measurements. (B) TRIR of pH 6.5 sample monitoring Hox and Hred states. (C) TRIR of pH 8.2 sample monitoring Hox
and Hred states. Color scheme is as follows: gold = Hox, light blue = Hred, black = 3-exponential fit.
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first explore whether the conversion of Hox to Hred is pH
dependent.
We first performed an equilibrium light-titration experiment

with the PDT form of CrHydA1. The sample was prepared
with NRs and a mediator at pH 8.2 (phosphate buffer) and
exposed to increasing light intensity (at 405 nm) while
monitoring the active site of the enzyme by Fourier transform
infrared (FTIR) spectroscopy (Figure S3). The PDT sample
displayed a decrease in the intensity at 1942 cm−1 from the Hox
population, consistent with reduction of the H-cluster.29 An
increase of the intensity at 1935 cm−1 due to formation of the
Hred state was also observed.29 The different intensities of the
Hox and Hred peaks in the difference spectrum is due to
different peak widths and extinction coefficients. The isosbestic
point is a clear indication of two-state behavior, indicating
direct conversion of Hox to Hred.
Next, we sought to assess the pH dependence of the kinetics

of the first ET step. We performed time-resolved measure-
ments monitoring the rate of formation of Hred at pH 6.5 and
8.2 by monitoring at frequencies associated with Hox (1942
cm−1) and Hred (1935 cm−1) (Figure 2A). The population of
the reduced mediator was also monitored with time-resolved
visible (TRVis) methods using the absorbance at 785 nm
(Figure S5). Previous studies by our groups established a
relationship between pH and the efficiency of the mediator
reduction by NRs.25 As the pH becomes more alkaline, hole
transfer from the rod to the sacrificial electron donor becomes
faster, resulting in a net increase in ET efficiency to the
mediator. These factors culminate in a larger, more negative
solution potential jump, which can influence the rate of ET to
the enzyme.25 To compensate for the pH dependent efficiency,
we have carefully attenuated the excitation source to obtain
consistent potential jumps at each pH value. Consistent
potential jumps were confirmed by TRVis studies monitoring
the population of the reduced mediator in solution. The
concentration of the DQ03 radical generated was kept within a
range of 220 μM to 270 μM (based on the absorbance at 785
nm) corresponding to solution potential jumps between −425
mV and −435 mV vs SHE.
The radical consumption rates measured at three different

laser intensities (2 mW, 4 mW, and 6 mW) were essentially
identical (Figure S6), indicating that the radical consumption
rate was not diffusion limited. Furthermore, the rates of radical
consumption, Hox decrease, and Hred increase were all the
same, indicating that electron transfer from the mediator to the
active site of the enzyme was rate limiting.
For both samples, FTIR spectra were recorded before and

after the TRIR experiments to monitor the formation (or
depletion) of the Hox and Hred populations present in each
sample (Figure S4). A representative FTIR spectrum from the
pH 6.5 sample, taken before the time-resolved measurements,
reveals a sample completely in the Hox state (Figure 2A).
Spectra recorded after the time-resolved IR experiment show
the appearance of a population of Hred. Difference spectra,
generated by subtracting the prepotential jump (pre-PJ)
spectra from the post-PJ spectra, highlight the changes in
population which occurred during the PJ experiment.
Figure 2, panels B and C, display TRIR kinetics traces for

the pH 6.5 and 8.2 samples. Individual kinetics traces (25−30
traces) are collected at each frequency for the sample as well as
a reference. Each data set is then averaged, and the reference
signal is subtracted from the sample, leaving a change in

absorbance (ΔA) related exclusively to the change in
population of each state.
The decrease in Hox (1942 cm−1) matches the increase in

Hred (1935 cm−1; ΔAbs = 4 × 10−3) and occurs on a similar
time scale for both pH 6.5 (Figure 2B) and 8.2 (Figure 2C).
Fitting the data with a multiexponential function (Figures S7−
S10) shows that, at pH 6.5, Hox decays with a lifetime of 28 μs,
while Hred forms with a lifetime of 25 μs. At pH 8.2, Hox decays
with a lifetime of 30 μs, while Hred forms with a lifetime of 29
μs. The rate of mediator decay, Hox decay, and Hred formation
are all the same within the error of the measurement (Figures
S6−S10). Furthermore, the behavior at pH 6.5 and 8.2 is
identical despite the difference in pH of 1.7 units
(corresponding to a 50-fold difference in H+ concentration).
These values are similar to those reported for the formation of
Hred from Hox in the native ADT-variant in our previous
study.26

Unexpectedly, the population of Hred appears to decay on
longer time scales. The Hred decay appears to be much faster at
pH 8.2, where the decay in Hred occurs with a lifetime of 840
μs and the reformation of Hox occurs with a lifetime of 1.2 ms,
compared to pH 6.5, where the decay in Hred occurs with a
lifetime of 43 ms and the reformation of Hox occurs with a
lifetime of 46 ms. These latter values indicate that over time
the population of Hred is not stable at slightly alkaline pH
values. H+ reduction by the enzyme is not likely to be the
explanation as this should be faster at low pH not high pH.
Instead, reoxidation of the enzyme by 3,3′-dithiodipropionic
acid (RSSR in Figure 1C), the product of sacrificial oxidation
of 3-mercaptopropanoic acid (RSH in Figure 1C) by the NR,
could be accelerated at high pH due to favorable charge
interactions between the deprotonated carboxylate groups of
RSSR and the positively charged region around [4Fe−4S]H in
CrHydA1.32 The discrepancies in the signal of Hox and Hred at
longer time points, especially at pH 8.2, are attributed to
imperfect removal of the contribution from sample heating
(see Figure S11 and details in ref 26).
In summary, we find that the reduction of the oxidized (Hox)

state of [FeFe] hydrogenase to the one-electron reduced state
has a pH-independent rate constant. A pH-independent rate
constant is not consistent with a PCET event where
protonation happens on comparable time-scales to electron
transfer but is more consistent with a simple ET event. These
results are in agreement with the pH-independent redox
potential of the [4Fe−4S]H subcluster of the H-cluster
determined in the absence of NaDT.21 We conclude that
catalytically important protonation occurs at the nitrogen of
the ADT bridge, leading to proton-coupled electronic
rearrangement (PCER) of the H-cluster to give a protonated,
one-electron reduced state (HredH

+) that is ready to accept an
additional electron on [4Fe−4S]H. This PCER process was
originally proposed based on the fact that the Hred and HredH

+

states vary their populations with pH, with Hred being prevalent
at high pH and HredH

+ being prevalent at low pH. Recently,
the same finding was interpreted by Laun et al. as evidence that
both sites can be protonated but that the proton shifts between
the two sites in a pH-dependent fashion.33 This later
interpretation is not chemically intuitive as the Hred and
HredH

+ states would be tautomers. Our current results provide
even further evidence against this idea as the rates of Hred
formation are also pH-independent. Overall, these results
highlight the utility of using time-resolved spectroscopy
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approaches for studying enzyme mechanisms, especially such
active catalysts as [FeFe] hydrogenases.
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